Course Type	Course Code	Name of Course		Т	Р	Credit
DE	NCYD530	Electrochemical Strategies in energy systems	3	0	0	3

Course Objective

This course will impart

- Fundamental understanding of the applications of electrochemistry
- Electrochemical techniques related to conversion and storage energy.

Learning Outcomes

After studying this course, students should be able to:

- Understand the basic electrochemical techniques used in energy systems.
- Study the stability limits and the interpretation of E_H - P_H (Pourbaix) diagram.
- Use concepts and models of mimicking systems in artificial photosynthesis.
- Understand the basic principles and advances in Fuel-Cell and its technology.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Voltammetric,Amperometric,PotentiometricandCoulometricmethods in energy systems.Stabilitylimits of water,Pourbaix diagram and itsfeatures,Difference in Pourbaix diagramof $[Ru(tpy) (bpy) (OH_2)]^{2+}$ and $[Ru (tpy)$ (bpm) $(OH_2)]^{2+}$.Understanding and casestudies of Pourbaix diagram	18L	This unit imparts the understanding of the basic electrochemical techniques used in energy systems and E_{H} - P_{H} (Pourbaix) diagram.
2	NAD ⁺ /NADH as a model redox system: Reaction path and case studies. Electrochemical, chemical and photochemical oxidation of Water, reduction of CO ₂ , Proton Reduction. Case Studies of each system. Electrochemical analogues of Water-gas shift (WGS) reaction and WGS in homogeneous systems; Syn Gas, Fischer-Tropsch process.	14L	The students will learn the use concepts and models of mimicking systems in artificial photosynthesis
3	Fuel Cells Technology: alkaline fuel cells, phosphoric acid fuel cell, molten carbonate fuel cells, solid oxide fuel cells, polymer electrolyte fuel cells; cell components, thermodynamics and kinetics, operation and performance, applications.	10L	The students will understand the basic principles and advances in Fuel-Cell and its technology
	TOTAL		

Text Books:

1. Hydrogen and Fuel Cells. Emerging Technologies and Applications. B. Sørensen. 2nd Edition, 2011. **Reference Books:**

- 1. Electrochemical Methods: Fundamentals and Applications 2nd Edition, Allen J. Bard and L. R. Faulkner, 2001.
- 2. Modern Analytical Chemistry, D. Harvey, 1st Edition, 2000.